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Abstract: X-ray fluorescence (XRF) spectrometry has proven to be a core, non-destructive, analytical
technique in cultural heritage studies mainly because of its non-invasive character and ability to
rapidly reveal the elemental composition of the analyzed artifacts. Being able to penetrate deeper
into matter than the visible light, X-rays allow further analysis that may eventually lead to the
extraction of information that pertains to the substrate(s) of an artifact. The recently developed
scanning macroscopic X-ray fluorescence method (MA-XRF) allows for the extraction of elemental
distribution images. The present work aimed at comparing two different analysis methods for
interpreting the large number of XRF spectra collected in the framework of MA-XRF analysis. The
measured spectra were analyzed in two ways: a merely spectroscopic approach and an exploratory
data analysis approach. The potentialities of the applied methods are showcased on a notable 18th-
century Greek religious panel painting. The spectroscopic approach separately analyses each one
of the measured spectra and leads to the construction of single-element spatial distribution images
(element maps). The statistical data analysis approach leads to the grouping of all spectra into distinct
clusters with common features, while afterward dimensionality reduction algorithms help reduce
thousands of channels of XRF spectra in an easily perceived dataset of two-dimensional images. The
two analytical approaches allow extracting detailed information about the pigments used and paint
layer stratigraphy (i.e., painting technique) as well as restoration interventions/state of preservation.

Keywords: MA-XRF; elemental maps; clustering; dimensionality reduction; painting stratigraphy;
pigments; panel painting

1. Introduction

XRF spectrometry is extremely valuable in the field of cultural heritage investigation
mainly because it offers rapid, accurate and non-invasive elemental characterization [1].
X-rays allow for a sophisticated analysis that can eventually lead to the extraction of infor-
mation pertaining to the substrate(s) of an artifact. In addition, one can retrieve information
on paintings’ materials and techniques through the generation of elemental distribution
maps by scanning macroscopic X-ray fluorescence (MA-XRF), an approach that is being in-
creasingly applied [2–5]. However, data acquisition during MA-XRF measurements results
in a large number of spectra (often in the order of millions) and their analysis/visualization
requires the development of efficient processing methods. Data analysis methods and
strategies have been developed for processing MA-XRF data to create single element
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maps ([6,7] and reference therein); the latter allow extracting information about the em-
ployed pigments and painting technique and previous restoration interventions/state of
preservation. Moreover, analysis of the intensity ratios of the characteristic transitions may
provide information about the object’s stratigraphy [8,9].

However, spectral data are high dimensional; therefore, intelligent data analysis
methods are needed to achieve data summarization and visualization in view of drawing
conclusions about the existence of patterns and structure [10–12]. Here we have considered
clustering methods to partition the data into groups containing spectra of similar shape.
Spectra being of high dimensionality, we employed the well-known k-means clustering
algorithm [13,14] that performs grouping based on the Euclidean distance between the
spectrum vectors. The algorithm is simple, has low computational cost and provides
sensible results. Once the clusters have been determined, representative spectra that
summarize the spectral characteristics of each cluster can be computed. A notable difficulty
when applying clustering methods is the determination of the correct number of clusters
which is unknown in our case. To tackle this issue, we used a criterion called silhouette [15]
that evaluates the quality of a clustering solution. We solved the clustering problem for
several values of clusters’ number, evaluate each solution using silhouette and then selected
the clustering solution of maximum silhouette value. Once the partition of spectra into
clusters was obtained, a representative spectrum for each cluster was computed; the latter
corresponds to the average of all spectra that belong to a given cluster and can be inspected
to draw conclusions about the spectral characteristics of the cluster.

Another data analysis method we employed is dimensionality reduction; its aim is
to map the original high-dimensional data into a low dimensional projection space under
the condition that the relative distances among spectra are maintained in the projection
space. Such a projection operation aims to eliminate irrelevant information and create low
dimensional projections that convey most information included in the original data. Here,
we first applied the well-known principal component analysis (PCA) approach (which is a
linear projection method) to lower the dimension of the original data [16]. Subsequently,
we applied the non-linear t-distributed stochastic neighbor embedding (t-SNE) method [17]
to the PCA projected data to further reduce the data dimension to two. Once the two-
dimensional projection vector of each spectrum was computed, it is possible to plot those
data thus achieving spectra visualization [18].

The potentialities of our approach are explored through the examination of an 18th
century Greek religious panel painting (“icon”) from Epirus (NW Greece) that depicts the
Virgin Mary “Odigitria” (Hodēgētria = She who shows the Way) (Figure 1-left). The icon
measures 28× 21 cm2 and is attributed to the famous painters from Kapesovo village, the so-
called “Kapesovites”. The Kapesovites were active during the 18th and 19th centuries and
decorated tens of churches with wall paintings [19]. In addition, they were manufacturing
portable icons, of which many dozens survive today [19,20]. Note that a growing interest
in the investigation of icons’ materials and techniques has currently emerged, which is
demonstrated by numerous publications [21–28]. In fact, the art of icon painting has been
practiced in Greece since the dawn of Christianity and persisted even during the period
between AD 1453 and 1830 (“post-Byzantine”) when the majority of Greek territories were
under Ottoman Turk rule [29,30]. During the latter period, Greek painters remained largely
adherent to the Byzantine tradition regarding painting style and kept using traditional
painting materials and techniques [21,28]. For instance, despite the established use of
oil mediums on primed canvas supports in Central European painting, Greek painters
continued to employ egg yolk on gypsum grounds [31]. Moreover, they relied heavily on
craftsmen’s handbooks for retrieving guidelines and prototypes (sketches/drawings) [32], a
habit shared by most of the medieval painters in Europe [33]. Therefore, it is not surprising
that the post-Byzantine icons were manufactured in a well-defined and rather conservative
manner in terms of materials and techniques.
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2. Materials and Methods
2.1. Experimental Setup

XRF scanning was performed using the M1-Mistral (Bruker) micro-XRF spectrometer
which is equipped with a thick glass window (of ~2 mm thickness) microfocus X-ray W-
tube, providing a continuous excitation spectrum emerging from 10 keV. Interchangeable
beam collimators determine the beam spot on the target. The sample is positioned on
a motorized X-Y-Z translation table. The X-Y stage allows programmable and remote
measurements across the sample’s surface, either at specific points or as line and area
scans. The travel range of the sample stage is about 180 mm in the x and y direction, with
a minimum step size of 10 µm. The Z-stage controls the movement of the sample along
the vertically impinging ionization beam, thus allowing the spectrometer’s geometrical
arrangement to remain unchanged when targets with uneven surfaces are investigated.
This is accomplished by the autofocus function, which is realized with the assistance of
an optical microscope (magnification ×30) and four LED lights for sample illumination.
The X-ray radiation emitted by the sample is detected by a semiconductor silicon drift
detector (SDD) with an active silicon area of 30 mm2 and silicon thickness of 450 µm. The
energy resolution is determined by the broadening (full width at half maximum, fwhm)
of a Gaussian distribution describing the measured line–shape of single energy photons.
The fwhm is a function of the impinging photon energy Eϕ, and it is determined by the
following equation:

f whm(eV) =
√

2.47·Eϕ(eV) + 4400 (1)

Scanning was performed in a step-by-step mode. An area of 64 × 40 mm2 was
scanned, with a lateral step of 1 mm in x- and y- directions. A circular-shaped aperture in
the direction of the excitation beam provided a beam spot described by a two-dimensional
Gaussian distribution, with spatial broadening of about 800 µm (fwhm). The X-ray tube
working conditions were 800 µA, 50 kV, while the acquisition time was 2 sec for each point,
thus resulting in about 1.5 h of active time for data collection. In Total, 2665 spectra were
collected and stored, one for every measured point. Each of the raw spectra reflects the
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distribution of the measured photons over the 2048 channels. The measured (x, y) spatial
position and the corresponding raw spectrum define a pixel. The total 2665 pixels are stored
in a hierarchical data format (HDF) format file, creating the X-ray cube (Figure 1-right). In
this way, the total information contained in the cube allows effortless data management. As
an example, the summation of intensities per channel generates the sum intensity spectrum
(Figure 1-right).

2.2. Clustering and Visualization

Our data analysis methodology is based on data clustering and visualization. Let
X = {x1, x2, . . . , xN} denote the spectra dataset, where each xi is a spectrum vector. The
main objective of data clustering algorithms is to organize the spectral information by
grouping similar spectra. More specifically, clustering methods partition the dataset X
into groups (clusters) such that spectra in a given cluster are close in terms of a distance
measure. Since spectra in the same cluster are similar, the information in each cluster
can be summarized by a representative spectrum, the cluster centroid. By inspecting the
properties of the centroid spectra, one can easily gain insight of the spectral information in
the dataset. Moreover, in the case of spectral images, the spatial distribution of the clusters
across the image can be visualized by plotting the ‘cluster labeled’ image, where pixels in
the same cluster are plotted with the same color.

Since the spectra are high dimensional vectors, we have selected the most popular
clustering method, namely the k-means algorithm [13–15] due to its simplicity and low
computational complexity. The k-means divides the spectra dataset into k non-overlapping
groups so that the variance of the clusters is minimized. It is an iterative algorithm that
starts from a random initial clustering, uses the Euclidean distance as a proximity measure
and at each iteration performs two steps to improve the partition. First, it assigns each
spectrum to the cluster whose centroid is the closest and then recomputes the centroids of
the new clusters. In this way, compact (of low between-cluster variance) cluster solutions
are obtained. Since k-means depends on initialization, we executed the algorithm several
times from different random initial partitions and finally kept the solution with the lowest
between-cluster variance.

It should be emphasized that to apply k-means, the number of clusters K should be
specified in advance. In our approach, this issue was tackled with the use of the silhouette
criterion [15]. Silhouette is a measure used to evaluate the quality of a clustering solution
ranging from −1 (highly overlapped clusters) to 1 (well separated clusters) [34]. Obviously,
solutions with higher values are preferred. To use silhouette to select the number of
clusters, k-means is executed for several values of the number of clusters K, each solution
is evaluated using silhouette, and finally, the clustering solution of maximum silhouette
value is selected. In our experiments, we considered solutions with more than six clusters
and found that the k-means solution with K = 10 clusters provided the maximum silhouette
score (≈0.52). Note that although less than seven clusters can achieve better scores, such a
limited number of clusters does not allow for the analysis to be detailed. More specifically,
a cluster number below seven would hinder the extraction of valuable information through
the clustering process. In other words, for the present problem, we need more than seven
clusters so the clustering results contain information with a level of detail suitable for our
analysis objectives. For example, a cluster produced with K = 6, which corresponds to a
specific part (color) of the painting, may consist of two or three parts (sub-clusters), each
one highlighting the multi-layered structure of the painting. Thus, for, e.g., K > 7, the
clustering output will contain these parts as concrete, separate clusters.

In addition to clustering, we also considered data visualization. For this reason, we
applied dimensionality reduction methods to project each high-dimensional spectrum
vector to a two-dimensional vector. Next, the two-dimensional projections were plotted,
thus achieving spectra visualization.

As the spectrum vectors contain more than 2000 components, the principal component
analysis (PCA) [35], a linear projection algorithm that produces the new independent
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features using linear combinations of the initial features, was first applied to reduce the
dimensionality of the spectra to 25.

To further reduce the spectra dimensionality from 25 to 2, t-distributed stochastic
neighbor embedding (t-SNE) was applied on dataset X’. The t-SNE is a nonlinear projection
method, commonly used for mapping high-dimensional vectors xi to low-dimensional
vectors yi to preserve the main structure of the initial data [35]. The t-SNE is generally
considered superior; however, its computational complexity does not allow its application
for high-dimensional data, since it becomes too slow in practice. On the other hand, even
though PCA is a widely used technique, its major drawback is that it fails to maintain the
local structures of the dataset. To mitigate this issue, a combination of PCA and t-SNE was
herein selected. The data analysis was realized in Python with the use of Anaconda and
Jupyter notebook environments.

3. Results
3.1. Data Analysis and Interpretation

Prior to commenting on the analytical data, we shall make a brief note regarding
the technique of post-Byzantine icon painting. The painters of the post-Byzantine period
were acting in a conservative technical framework that largely reflected the techniques of
medieval European painting. Indeed, they worked mainly by mixing pigments with egg
yolk (plus water), which is a medium that dries almost instantly, thus allowing for the rapid
application of successive paint layers. This property of the medium affects the way an
icon is painted. First, the preliminary underpaintings are applied. Then, they are partially
covered by paint layers of successively lighter tonalities (midtones/highlights) [36]. This is
extremely important and must be taken into account when interpreting XRF data because
it implies that when analyzing an area where volume has been rendered (e.g., cheek), the
XRF spectra may contain information that pertains to layers existing below the visible ones.

To demonstrate the typical structure of an icon, two photomicrographs of a characteris-
tic micro-sample collected from a spot that depicts flesh is presented (Figure 2a,b); the first
photomicrograph was captured through an optical microscope (OM) and the second using
the backscattered electron detector (BSE) (the BSE detector allows for the differentiation
of an observed phase on the basis of the atomic number of its constituent elements (the
higher their atomic number, the brighter they appear) [37]) of a scanning electron micro-
scope (SEM). This sample originates from an AD 1773 Greek icon that was painted by a
Kapesovitis painter, such as the Virgin Mary icon in consideration. The sample’s cross
section shows four distinct layers: the first (1) corresponds to the ground layer (“gesso”) on
which the primary flesh color (2), the midtones (3) and the highlights (4) were applied. For
reasons of convenience, a corresponding detail of the Virgin Mary icon with the various
aforementioned paint layers marked on it is also shown (Figure 2).
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Figure 2. (a) Cross-section of a microsample; numbers mark the successive paint layers that lay on
the ground (1); detail of an OM image (200×). (b) Same cross-section as seen through the SEM’s BSE
detector (1000×). Note the extensive use of lead white grains (white particles) in all three flesh paint
layers (2–4). (c) Detail of the Virgin Mary icon showing the flesh primary color (2), midtones (3) and
highlights (4).

3.2. Spectroscopic Analysis

The first method of analysis and interpretation of MA-XRF data is based on the
extraction of element maps by analyzing each spectrum separately and then visualizing the
extracted information in a two-dimensional spatial map. A calibration procedure is applied
to X-ray cube spectra to convert each channel to photon energy. The applied calibration
equation is given below:

Eϕ(eV) = 19.99(eV/ch)× channel − 964.70 eV (2)

Each spectrum consists of 2048 channels and the measured energy range extends up
to 40 keV. The data were analyzed using the PyMCA code [6]. The extracted elemental
distribution maps of Ca, Sr, Mn, Fe, Cu, Au, Hg and Pb are shown in Figure 3.
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Figure 3. (a) Macro photograph of the scanned area; (b) Scanning XRF image of the Ca Kα transition
intensity; (c) Sr Kαmap; (d) Mn Kαmap; (e) Fe Kαmap; (f) Cu Kαmap; (g) Au Lαmap; (h) Hg Lα
map; and (i) Pb Lαmap. Arrows indicate areas of later interventions.



J. Imaging 2022, 8, 147 7 of 15

Lead is detected on the areas of flesh and especially on the midtones and highlights
(Figure 3i), thus revealing the employment of lead white, which was practically the only
white pigment used in panel painting until the 19th century [38]; note that lead white was
extensively mixed with other pigments to impart brightness or/and body (Figure 2c). Lead
is also detected on the bluish areas, especially in the case of the pale-bluish background
(lower left corner) and, faintly, on the Virgin Mary’s kerchief, where it was probably mixed
with a copper-based blue pigment; besides, copper blue pigments were widely used by
painters of the era and area in consideration [26].

Iron is detected on the flesh, on the mantle and, faintly, on the halo and the fringe
of the mantle (Figure 3e). In flesh areas, there is a strong correlation between lead and
iron. The intensities of the Fe Kα and the Pb Lα transitions are negatively correlated as
can be deduced from their scatter plot (Figure 4-left). Here, iron is detected due to the em-
ployment of ochre-type pigments, which, in the case of flesh renderings, are mostly mixed
in the primary paint layers (layer 2 in Figure 2a–c). Therefore, iron fades and gradually
“disappears” in the areas of high lead content simply because the iron-rich primary layers
lay below numerous layers of lead-rich paints (lighter tones and highlights—layers 3 and 4
in Figure 2a–c). However, in the areas of maximum iron intensities, there is also a strong
presence of manganese (Mn) (Figure 3d), and this hints towards the employment of umber
(i.e., a Mn-rich iron ochre) [28,39]. Moreover, these areas coincide with dark contours and
shadows, where an umber pigment was presumably used.
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Figure 4. Transitions intensity scatter plots to derive spatial correlations. Left: Pb La relative to Fe
Kα. Red scatter points correspond to measurement points over the Virgin’s highlighted part of the
face. Right: Hg Lα relative to the Fe Kα intensity. Red scatter points correspond to measurement
points over the highlighted part of the mantle.

The intensity of the Fe Kα transition on the mantle diminishes from the shadowy deep
red areas towards the highlighted ones, where mercury (Hg) is also detected (Figure 3h).
This is confirmed by the negative correlation between the Fe Kα and the Hg Lα intensities
shown in Figure 4-right and indicates that the mantle highlights were rendered on top of
the iron-ochre primary layer by cinnabar/vermilion (HgS), a pigment extensively used
by post-Byzantine painters [28]. The same pigment was probably used for rendering the
lips as indicated by the presence of mercury (Figure 3h). On the other hand, the minor
iron that is detected on the gilded halo and the mantle fringe is obviously related to a
“bole” substrate, namely, a fine, iron-rich clay that was customarily used for attaching gold
leaf on icons [40]. The typical post-medieval gold leaf was extremely thin, (<1 µm) and
this is probably why in the studied icon, low intensities of gold were detected (Figure 3g).
However, post-Byzantine craftsmen had at their disposal finely ground gold powder
too, and this material was often used like a pigment for rendering details on icons [40].
Interestingly, in the case of this artifact, the scanning XRF analysis indicates that both of
these materials have been employed. The halo and mantle fringe appear as continuous
areas, thus indicating employment of gold leaf, while scattered gold spots appear laying on
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the blue kerchief hinting towards the use of gold powder (“shell gold”) (Figure 3g). Note
that the latter spots are of varying intensities, implying that the corresponding paint layers
are of varying thickness. Moreover, the use of both gold leaf and powder is also indicated
by the visual observation of the corresponding areas. It is worth mentioning that gold was
extensively used in post-Byzantine painting to render icons’ backgrounds, saints’ halos and
other iconographical details because this glittering and noble material was considered a
representation of the divine glory [41].

Moreover, elemental maps reveal the presence of calcium and strontium (Figure 3b,c).
Both these elements show greater intensities on areas that bear relatively thin layers,
namely on the gildings (halo and fringe) and the areas of primary colors (darker/shadowy
areas) of the face and mantle (Figure 3a), while their intensity drops drastically in the
areas of high lead and high mercury intensities (e.g., flesh midtones and highlights).
Therefore, it is inferred that calcium and strontium co-exist in a single layer that serves as a
common substrate for both the paint layers and the gold leaf. This is indeed the case in
the preparatory/ground layers (“gesso”) that were customarily applied on wooden panels
prior to painting [31,42]. In the case of Greek post-Byzantine icons, grounds were almost
exclusively made using calcium sulfate compounds (e.g., gypsum, anhydrite) [31], which
often contain impurities of strontium sulfate (celestine—SrSO4) [31,43]. Interestingly, in
the corresponding elemental map, there are several areas showing the intense presence
of strontium, and this might indicate the presence of globules/particles. Previous SEM
observations have revealed numerous strontium sulfate particles within the ground layers
of post-Byzantine Greek icons (Figure 2b).

Finally, through the elemental maps, we were able to spot information pertaining to the
state of preservation of the artifact. The lead elemental map shows two small-sized intensity
irregularities on the area of Virgin Mary’s cheek, where lead is virtually absent presumably
due to paint loss (arrows on Figure 3e), thus revealing older aesthetical interventions
(“retouching”) performed using an iron-rich paint. Similarly, the elemental map of copper
shows a spot of high intensity on the Virgin Mary’s eyebrow (Figure 3f). As the latter was
originally rendered in umber (Figure 3d,e), the copper can be safely attributed to a later
intervention. In all these cases, a close inspection of the icon reveals that these spots have
indeed received retouching treatments to compensate for paint losses (Figure 3a).

3.3. Cluster Analysis

Our second approach for MA-XRF data interpretation is based firstly on the appli-
cation of the k-means clustering algorithms to group the spectra with common features.
This procedure groups the 2665 spectra contained in the X-ray cube spectrum to 10 distinct
clusters. Then, principal component analysis (PCA) and t-distributed stochastic neigh-
bor embedding (t-SNE) statistical methods were applied on the X-ray cube spectrum to
allow for the visualization of the high-dimensional data in a two-dimensional scatter plot
(Figure 5, Left). The spatial cluster distribution is shown in Figure 5, right, resembling the
visual image.
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To extract information about pigments/materials, the representative spectrum of
each cluster was evaluated. These spectra represent the mean spectrum of all spectra
participating in each cluster. The correspondence between cluster distribution and the
energy calibrated in the representative spectra (Equation (2)) is shown in Figure 6. Spectral
lines analysis allows the determination of the elements involved in each cluster and,
consequently, the presence of specific elements in the areas that each cluster describes.
Moreover, the intensities of the transition lines are related to the mass concentration of the
elements and their in-depth distribution, as well as the materials’ densities. The transition
intensities were estimated by the region of interest method (ROI) which evaluates the
intensity of each spectral line in an energy range defined between a low and a high energy
limit, below and above the transition’s centroid, respectively. The energy range was selected
equal to± f whm/2 (Equation (1)) to avoid overlap of the L X-ray transitions of the elements
Au, Hg and Pb (with transition centroids at 9713, 9989 and 10,551 eV, respectively).
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Figure 6. Spatial distribution of clusters (left); and corresponding X-ray emission spectra (right).
On the top of the representative spectra is presented the X-ray spectrum of the dominating element,
as evaluated by a Monte-Carlo simulation [44]. (a) Clusters 1, 5, 7 and 8. Pb Lα is the dominant
transition. (b) Clusters 3 and 6; dominant transition: Hg Lα. (c) Clusters 0 and 2; dominant transition:
Cu Kα. (d) Cluster 9; dominant transition: Au Lα. (e) Cluster 4; dominant transition: Fe Kα.

The spatial distribution of Clusters 1, 5, 7 and 8, and the related representative XRF
spectra are presented in Figure 6a. The group of clusters correspond to the image segment
depicted in Figure 5, right, i.e., the Virgin’s flesh (face and ear) and the icon’s background
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(low left corner of the image). The Pb L X-ray spectrum dominates in the group, while
the Fe K, Cu K and Sr K transitions are present. These four clusters that are grouped
together contain the consistent characteristic transitions but with dissimilar intensities for
each element. Especially in the case of the flesh, the distribution of the various clusters
highlights the multi-layered structure of the painting and the fact that the whiter a pictorial
element is, the more lead it contains (Figure 7). The extracted (by ROI method) intensities of
the Fe Kα, Cu Kα, Au Lα, Hg Lα and Pb Lα transitions are shown in Figure 8. A negative
correlation between lead and iron and a positive correlation between lead and copper is
detected in Clusters 1, 5, 7 and 8. These correlations coincide with those revealed by the
elemental maps analysis and indicate that a lead pigment was applied over an iron-rich
pigment (flesh) and, in the second case, that the copper compound was mixed with the lead
pigment (bluish background) (Figure 4). The intensity ratio Lβ/Lα of the Pb transitions
was found to increase totally by 9% in the clusters sequence 5→ 1→ 8→ 7 (Figure 7, left),
indicating that the lead layer becomes gradually thicker [45]. Similarly, the intensity ratio
Kβ/Kα of the Fe transitions was found to increase totally by 25% in the clusters sequence
5→ 1→ 8→ 7. This is due to the smaller attenuation of the more energetic Fe Kβ photons
(7.1 keV) compared to the Fe Kα photons (6.4 keV) from the overlaying lead layer [46]. The
results above demonstrate that the proper analysis of the transitions intensities from the
clusters’ representative spectra allows the stratigraphy determination [8].

The representative XRF spectra of Clusters 3 and 6 are shown in Figure 6b. This
group of clusters corresponds to the Virgin Mary’s mantle; here, the Hg L X-ray spectrum
dominates, while contributions from Fe K, Pb L and Sr K transitions are discrete. The
extracted intensities of the Fe Kα, Cu Kα, Au Lα, Hg Lα and Pb Lα transitions are shown in
Figure 8. A positive correlation between Hg and Pb intensities is deduced, which indicates
the mixing of the pertinent compounds before their application. This finding is interesting
because the two major inorganic red pigments of post-Byzantine painting, namely red
lead (Pb3O4) and cinnabar (HgS), were indeed often intermixed [28]. Moreover, a negative
correlation between Hg and Fe intensity values is observed, which suggests that the two
elements were applied interchangeably (Hg over Fe), a conclusion extracted from the
elemental maps analysis as well (Figure 4).
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Figure 8. Intensities of Fe Kα, Cu Kα, Au Lα, Hg Lα and Pb Lα transitions for each cluster, extracted
with the method of ROI from the representative spectra. Left: Intensities of specific transitions (that
pertain to a specific element) for the various clusters. As an example, the maximum intensity of the
Fe Kα is about 175 counts, and it is observed in Cluster 5, while the maximum intensity of the Cu Kα
(~1300 counts) is in Cluster 2. The average transition intensities per pixel are marked by red crosses.
Right: Transition intensities per specific cluster. For instance, in Cluster 2 the maximum intensity
corresponds to the Cu Kα, followed by the Pb La.

On the other hand, the energy distribution of Clusters 0 and 2 that correspond to the
areas of the Virgin’s kerchief (2: kerchief interior, 0: borderline), and the corresponding
representative XRF spectra are shown in Figure 6c. The extracted intensities of the Fe Kα,
Cu Kα, Au Lα, Hg Lα and Pb Lα transitions are shown in Figure 6. Evidently, the Cu
K X-ray spectrum dominates in both clusters, followed by Pb. This coincides with the
conclusion extracted through the elemental maps analysis, which indicates that the Virgin
Mary’s bluish kerchief was rendered by mixing a Cu-based blue pigment with Pb-white.
The lower Cu intensity (which is accompanied by Fe and Au) in Cluster 0 is due to the
elemental distribution in the borderline between the kerchief and its surroundings (iron-
containing flesh and mantle, and the gold-based halo and fringe). In addition, the Au Lα
transition has its second-highest intensity in cluster 0 (Figure 8). This is due, not only to the
scarf’s borderline with the gold-based halo, but also to the usage of shell gold for painting
parts of the scarf. What is highly interesting is the existence of a small number of pixels
of Cluster 2 outside the Virgin’s kerchief (Figure 6c). These copper-dominated pixels are
located on the Virgin’s eyebrow, and they are attributed to a later intervention as concluded
from the elemental map analysis (Figure 3c). This observation reveals the high sensitivity
of the cluster analysis.

The spatial distribution of Cluster 9 and its representative XRF spectrum is presented
in Figure 6d. Cluster 9 corresponds to the Virgin’s halo, where Au L X-ray transition lines
predominate. The simultaneous detection of Fe, Cu, Pb and Hg transition lines presumably
pertains to the presence of these elements either at the halo’s borderline or to Au coating
above these elements, or, occasionally, to their existence as substrates lying below Au (i.e.,
iron-based bole that was used as the binding material for the gold leaves). It is worth
noting that Cluster 9 forms an extended and rarefied structure in the 2D cluster distribution
(Figure 5, right). This is due to the one order of magnitude lower intensity of the Au Lα
transition compared to the predominant transitions in the other clusters.

Finally, the spatial distribution of Cluster 4 and its representative XRF spectrum
(Figure 6e) corresponds to the dark areas of the Virgin’s face and scarf. Fe K X-ray spectrum
dominates this cluster, but the contribution of Pb L X-ray is also high. Moreover, Cluster 4
can be considered the continuation of Cluster 5, with the intensities of Pb and Fe inverted.
In addition, weak transition intensities of Cu, Hg and Au are also recorded, obviously due
to the extended borderline of the areal region of Cluster 4. Finally„ Cluster 4 occupies the
center of the diagram and borders with all cluster groups.



J. Imaging 2022, 8, 147 13 of 15

4. Conclusions

The present work aimed at analyzing images of a painting through the processing
of a large number of corresponding XRF spectra acquired through MA-XRF spectroscopy.
Specifically, 2665 spectra from a segment of an 18th century post-Byzantine icon were
recorded by a scanning spectrometer. To interpret the XRF spectra, two different methods
were employed: a spectroscopic and a statistical data analysis one (“clustering approach”).
The spectroscopic approach separately analyses each one of the measured spectra. This
procedure requires fundamental knowledge of XRF spectroscopy, knowledge of the spec-
trometer’s energy calibration parameters and appropriate software for fitting theoretical
models to the experimental data. The prominent advantage of the method is the con-
struction of single-element spatial distributions images (element maps), with the spatial
resolution determined from the scanning step and/or the X-ray beam spot.

The clustering approach was accomplished using a k-means algorithm. The advantage
of the method is the grouping of thousands of XRF spectra in an easily perceived dataset
of 10 clusters, without requiring distinct skills in XRF analysis and knowledge of energy
calibration parameters. The obtained cluster distribution gave a fair description of the
icon’s visual image. Subsequently, the representative spectra of each cluster were energy
calibrated, thus revealing the strong correlation between clusters and elemental distribution.
Further analysis was performed with dimensionality reduction algorithms. The aim of such
a technique was to map the original high-dimensional data into a low-dimensional projec-
tion space under the condition that the relative distances among spectra are maintained in
the projection space. While the extracted spatial resolution is inferior to the analysis by the
elemental maps approach, the extracted maps are multi-elemental.

In conclusion, both of the applied analytical approaches allow for the extraction of de-
tailed information about the employed pigments, the stratigraphy of the paint layers (paint-
ing technique) and the restoration state of the preservation of the artifact in consideration.
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