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Abstract: The modification of the methyl group of 4′-(p-tolyl)-2,2′:6′,2′′-terpyridine produced the
novel unnatural amino acid 3-(4-([2,2′:6′,2′′-terpyridin]-4′-yl)phenyl)-2-aminopropanoic acid (phet).
Mononuclear heteroleptic ruthenium complexes of the general formulae [Ru(L1)(L2)](PF6)2

(L1 = 2-acetylamino-2-(4-[2,2′:6′,2′′]terpyridine-4′-yl-benzyl)-malonic acid diethyl ester, (phem),
3-(4-([2,2′:6′,2′′-terpyridin]-4′-yl)phenyl)-2-aminopropanoic acid, (phet), and L2 = 2,2′:6′,2′′-terpyridine
(tpy), 4′-phenyl-2,2′:6′,2′′-terpyridine (ptpy), 4′-(p-tolyl)-2,2′:6′,2′′-terpyridine (mptpy)), as well as the
homoleptic [Ru(phem)2](PF6)2 and [Ru(phet)2](PF6)2, were synthesized and characterized by means
of NMR spectroscopic techniques, elemental analysis, and high-resolution mass spectrometry. The
photophysical properties of the synthesized complexes were also studied.

Keywords: ruthenium; terpyridine; photophysical properties; unnatural amino acid

1. Introduction

Unnatural amino acids (UAAs) are amino acids which are not involved in the protein
synthesis process in the cell. They are also called non-proteogenic amino acids. Even though
several UAAs frequently occur in nature [1], most of them are chemically synthesized [2,3].
UAAs are promising therapeutic substances as single amino acids [4,5] and scaffolds for
peptidomimetics [4,5], precursors in organic synthesis [6], antibody–drug conjugates [7],
smart materials [8], and fluorescent probes for biomedical applications [9,10]. Among the
various types of UAAs, α-amino acids analogous are very important motifs for pharmaceu-
tical compounds [11–14]. Phenylalanine and tyrosine derivatives are unambiguously the
most studied unnatural α-amino acids as they are already in clinical use [15–17]. Several
synthetic procedures based on transition metal catalysts to modify the phenylalanine in a
highly selective manner have been investigated [18,19].

On the other hand, 2,2′:6′,2′′-terpyridines can act as tridentate chelating ligands form-
ing very stable metal complexes. These complexes have attracted research interest due to
their unique properties as photoluminescence compounds, DNA binders, sensors, tumour
inhibitors and photosensitizers in PDT [20–26]. Despite that, Ru-bis-terpyridine complexes
have rarely been investigated as photosensitizers since they do not acquire the appro-
priate photophysical requirements for PDT [27,28]. However, 4′-substituted terpyridines
with proper units may improve the photophysical properties of Ru-bis-terpyridine com-
plexes [29]. Moreover, properly 4′-substituted terpyridines can be used as effective building
blocks to form polynuclear metal complexes [30–32]. Thus, Ru-bis-terpyridine mononuclear
complexes are linked to each other by various linkers and with various types of bonds [30]
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in order to form polymeric structures. The most common types of bonds are: (a) carbon–
carbon bonds, as in the cases of phenylene-linked [33] or alkyne-linked complexes [34] and
(b) amide bonds that are formed between heteroleptic Ru-bis-terpyridine complexes contain-
ing a 4′-carboxyl group-substituted tpy from one side and a 4′-amino group one from the
other [35–37]. Additionally, tpy units are incorporated as side chains in polymeric materials
producing various interesting structures such as those recently reported by Wang et al. [38].
The synthesized polymer is a novel white-light-emitting fluorescent material. Inspired by
the above, we designed and synthesized the UAA 3-(4-([2,2′:6′′,2′′-terpyridin]-4′-yl)phenyl)-
2-aminopropanoic acid (phet) through the modification of 4′-(p-tolyl)-2,2′:6′,2′′-terpyridine,
so it can be potentially used as a building block in the formation of polynuclear metal
complexes or polymeric materials (Scheme 1).
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98% were purchased from Sigma-Aldrich and Alfa Aesar. Hydrated ruthenium trichlo-
ride, RuCl3·3H2O, was purchased from Pressure Chemical Company (Pittsburgh, PA,
USA). Deuterated solvents for NMR spectroscopy were purchased from Sigma-Aldrich.
The compounds 4′-phenyl-2,2′:6′,2′′-terpyridine (ptpy) [39], 4′-(4-methylphenyl)-2,2′:6′,2′′-
terpyridine (mptpy) [40,41], 4′-[4-bromomethyl-phenyl)- 2,2′:6′,2′′-terpyridine [40],
[Ru(tpy)Cl3] [42], [Ru(ptpy)Cl3] [42], and [Ru(mptpy)Cl3] [42] were synthesized according
to the literature methods.

2.2. Methods

C, H, N determinations were performed on a PerkinElmer 2400 series II analyser.
Electrospray mass spectra (ESI-MS) were obtained on an Agilent Technology LC/MSD
trap SL instrument and Thermo Scientific, LTQ Orbitrap XL™ high-resolution system.
Absorption spectra were measured in a Jasco V-650 spectrophotometer in a 1 cm path
length cell for the region 900–220 nm. NMR spectra were recorded on Bruker Avance
spectrometers operating at proton frequencies of 400.13 and 500.13 MHz and were processed
using Topspin 4.07 (Bruker Analytik GmbH, Ettlingen, Germany). Two-dimensional COSY
and TOCSY spectra were recorded using the standard Brucker procedures.

2.3. Fluorescence Emission Studies

The fluorescence emission study was carried out using a Jasco FP-8300 fluorometer
equipped with a xenon lamp source. The photoluminescence quantum yields of the solu-
tions were calculated by the equation Qs = Qr(Ar/As) (Es/Er) (ns/nr)2, using [Ru(bpy)3]Cl2
in degassed water as a reference standard (Qr = 0.04). ‘A’ represents the absorbance of the
solution, ‘E’ the integrated fluorescence intensity of the emitted light, ‘n’ is the refractive
index of the solvents and subscripts ‘r’ and ‘s’ correspond to the reference and the sample,
respectively. By the equation Q = S2/S0 − S1 the quantum yield of solid state of the com-
plexes were calculated. S2 denotes the integrated emission intensity of the sample and S0,
S1 stand for the excitation intensities of the standard and the sample, respectively.

2.4. Synthesis of the Compounds and the Ruthenium Complexes

2-acetylamino-2-(4-[2,2′:6′,2′′]terpyridine-4′-yl-benzyl)-malonic acid diethyl ester, (1),
(phem): In a single-neck 250 mL round-bottom flask, 100 mL of MeCN, 402 mg (1 mmol) of
4′-[4-bromomethyl-phenyl)-2,2′:6′,2′′-terpyridine, 217 mg (1 mmol) of diethyl acetamido-
malonate, 276 mg (2 mmol) of K2CO3, and 166 mg (1 mmol) of KI were added in this
order. The mixture was refluxed for 12 h, cooled at ambient temperature, filtered from the
unreacted materials, and the orange solution was evaporated to dryness, under reduced
pressure. The crude red-brown solid was dissolved in 100 mL of CH2Cl2 and washed
three times with 100 mL of distilled water. The organic phase was collected carefully, dried
with MgSO4, and evaporated almost to dryness. The microcrystalline pale-yellow product
was collected with filtration, washed with toluene, and dried under vacuum over CaCl2.
Yield 80% (430 mg). C31H30N4O5 (538.2): Calc. C, 69.13; H, 5.61; N, 10.40. Found C, 68.82;
H, 5.83; N, 10.52. 1H NMR (dmso-d6, 298 K, δ in ppm, 3J in Hz, 400 MHz) H3H3′′ = 8.77
(d, 2H, 3J = 8.0); H4H4′′ = 8.05 (t, 2H, 3J = 7.9); H5H5′′ = 7.54 (t, 2H, 3J = 7.4); H6H6′′ = 8.77
(d, 2H, 3J = 5.3); H2′′′H6′′′ = 7.87 (d, 2H, 3J = 8.1); H3′′′H5′′′= 7.20 (d, 2H, 3J = 8.1);
H3′H5′ = 8.71 (s, 2H); NH = 8.17 (s, 1H); βCH2- = 3.53 (s, 2H); CH3-[acetylamide] = 2.00
(s, 3H); CH3-[ethylester] = 1.21 (t, 6H, 3J = 6.2); CH2-[ethylester] = 4.20 (q, 4H, 3J = 7.2).
HR-ESI-MS: m/z = 539.2280; calculated for [C31H30N4O5 + H]+, m/z = 539.2289, assigned
to [(1)H]+.

(R, S)-3-(4-([2,2′:6′,2′′-terpyridin]-4′-yl)phenyl)-2-aminopropanoic acid (2), (phet): In a
single-neck 100 mL round-bottom flask, 50 mL of 6M aqueous HCl and 430 mg (0.8 mmol)
of (1) were added. The mixture was refluxed for 48 hours, cooled at ambient temper-
ature, filtered from the impurities, and evaporated to dryness. The solid product was
dissolved in 50 mL of distilled water and the pH was adjusted to 4.5–5. After 24 h in
the fridge, a microcrystalline solid appeared, and was collected with filtration, washed
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two times with 5 mL of H2O and dried under vacuum over CaCl2. Yield 75% (300 mg).
C24H20N4O2 (396.2): Calc. C, 72.71; H, 5.08; N, 14.13. Found C, 72.52; H, 5.13; N, 14.08. 1H
NMR (DCl, pH = 2, 298 K, δ in ppm, 3J in Hz, 400 MHz) H3H3′′ = 7.87 (d, 2H, 3J = 8.2);
H4H4′′ = 8.69 (t, 2H, 3J = 8.2); H5H5′′ = 8.08 (t, 2H, 3J = 6.9); H6H6′′ = 8.89 (d, 2H, 3J = 6.0);
H3′H5′ = 8.71 (s, 2H); H2′′′H6′′′ = 8.80 (d, 2H, 3J = 8.2); H3′′′H5′′′ = 7.44 (d, 2H, 3J = 8.2);
αCH- = 4.32 (t, 1H, 3J = 6.2); βCH2- = 3.27, 3.30 (m, 2H, 3JHαHβ1/HαHβ2 = 6.3/7.2). HR-
ESI-MS: m/z = 397.1644, z = 1; calculated for [C24H20N4O2]+, m/z = 397.1659, assigned
to [phet]+. 1H NMR (dmso-d6, 298 K, δ in ppm, 400 MHz). [phet]: H3′H5′ = 8.71
(s, 4H); H3H3′′ = 8.68 (d, 4H); H4H4′′ = 8.04 (t, 4H); H5H5′′ = 7.53 (t, 4H); H6H6′′ = 8.77
(d, 2H); H2′′′H6′′′ = 7.86 (d, 4H); H3′′′H5′′′ = 7.49 (d, 4H); αCH- = 3.44 (m, 1H); βCH2- = 3.30,
3.32 (m, 2H).

Ru(phem)Cl3, (3): In a solution of 50 mL MeOH containing 130 mg (0.5 mmol) of
RuCl3·3H2O, 270 mg (0.5 mmol) of phem was added under continuous stirring. After 1 h
at ambient temperature, a dark-red precipitate appeared, which was filtered off, washed
two times with 5 mL cold MeOH, and dried under vacuum over CaCl2. Yield 90% (340 mg).
C31H30Cl3N4O5Ru (746): Calc. C, 49.91; H, 4.05; N, 7.51. Found C, 49.63; H, 4.22; N, 7.38.

[Ru(tpy)(phem)](PF6)2 (4): In a double-neck 100 mL round-bottom flask, 15 mL of
ethylene glycol, 45 mg (0.1 mmol) of Ru(tpy)Cl3, and 54 mg (0.1 mmol) of phem were
added. The mixture was heated at reflux under a stream of argon for 12 hours and cooled
slowly at ambient temperature, and 20 mL of distilled water was added. To the result-
ing red solution, about 20 mg (0.1 mmol) of KPF6 was added under continuous stirring
and the mixture was kept overnight in the fridge. The dark-red precipitate was collected
through filtration and purified chromatographically as follows: The crude product was
dissolved in 2 mL of MeCN:H2O 6:1, saturated with KNO3, loaded on a column of silica
(30 cm × 2 cm), and eluted with the same solvent. The first red-coloured band was col-
lected and evaporated to dryness. The resulting solid was dissolved in saturated aqueous
solution of KPF6 where the complex (4) was precipitated, collected through filtration, and
dried under vacuum over CaCl2. Yield 65% (75 mg). C46H41F12N7O5P2Ru (1162.9): Calc.
C, 47.51; H, 3.55; N, 8 [tpy]: H3H3′′ = 9.09 (d, 2H, 3J = 8.0); H4H4′′ = 8.06 (t, 2H, 3J = 7.8);
H5H5′′ = 7.28 (t, 2H, 3J = 7.0); H6H6′′ = 7.43 (d, 2H, 3J = 5.7); H3′H5′ = 8.84 (d, 2H, 3J = 8.1);
H4′ = 8.54 (t, 1H, 3JH3′H4′ = 8.1). [phem]: H3H3′′ = 9.11 (d, 2H, 3JH3H4 = 7.9); H4H4′′ = 8.04
(t, 2H, 3J = 7.9); H5H5′′ = 7.26 (t, 2H, 3J = 7.5); H6H6′′ = 7.51 (d, 2H, 3J = 5.2); H3′H5′ = 9.45
(s, 2H); H2′′′H6′′′ = 8.38 (d, 2H, 3J = 7.9); H3′′′H5′′′ = 7.36 (d, 2H, 3J = 7.9); NH = 8.19 (s,
1H); βCH2- = 3.66 (s, 2H); CH3-[acetylamide] = 2.02 (s, 3H); CH3-[ethylester] = 1.23 (t, 6H,
3J = 6.3); CH2-[ethylester] = 4.22(q, 4H, 3J = 7.2). HR-ESI-MS: m/z = 436.6112, z = 2; calcu-
lated for [C46H41N7O5Ru]2+, m/z = 436.6101, assigned to [Ru(tpy)(phem)]2+.

[Ru(ptpy)(phem)](PF6)2 (5): In a double-neck 100 mL round-bottom flask, 10 mL
of ethylene glycol, 53 mg (0.1 mmol) of Ru(ptpy)Cl3, and 54 mg (0.1 mmol) of phem
were added. The mixture was heated at reflux under a stream of argon for 24 h, cooled
slowly at ambient temperature, and 20 mL of distilled water was added. To the result-
ing red solution, about 20 mg (0.1 mmol) of KPF6 was added under continuous stirring
and the mixture was kept overnight in the fridge. The dark-red precipitate was collected
through filtration and purified chromatographically as in the case of (1). The resulting
solid was dissolved in saturated aqueous solution of KPF6 where the complex (5) was
precipitated, collected by filtration, and dried under vacuum over CaCl2. Yield 65% (82 mg).
C52H45F12N7O5P2Ru (1239): Calc. C, 50.41; H, 3.66; N, 7.91. Found C, 50.63; H, 3.82; N,
7.96. 1H NMR (dmso-d6, 298 K, δ in ppm, 3J in Hz, 400 MHz). [ptpy]: H3H3′′ = 9.11 (d,
2H, 3J = 8.2); H4H4′′ = 8.06 (t, 2H, 3J = 8.2); H5H5′′ = 7.28 (t, 2H, 3J = 8.0); H6H6′′ = 7.53 (d,
2H, 3J = 5.5); H3′H5′ = 9.46 (s, 2H); H2′′′H6′′′ = 8.44 (d, 2H, 3J = 7.9); H3′′′H5′′′ = 7.77 (t, 2H,
3J = 7.9); H4′′′ = 7.69 (t, 1H, 3J = 7.1); [phem]: H3H3′′ = 9.11 (d, 2H, 3J = 8.2); H4H4′′ = 8.06
(t, 2H, 3J = 8.1); H5H5′′ = 7.27 (t, 2H, 3J = 8.0); H6H6′′ = 7.53 (d, 2H, 3J = 5.5); H3′H5′ = 9.47
(s, 2H); H2′′′H6′′′ = 8.44 (d, 2H, 3J = 7.9); H3′′′H5′′′ = 7.37 (d, 2H, 3J = 7.9); NH = 8.19 (s,
1H); βCH2- = 3.66 (s, 2H); CH3-[acetylamide] = 2.04 (s, 3H); CH3[ethylester] = 1.25 (t, 6H,
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3J = 6.3); CH2[ethylester] = 4.22 (q, 4H, 3J = 7.2). HR-ESI-MS: m/z = 474.6272, z = 2; calcu-
lated for [C52H45N7O5Ru]2+, m/z = 474.6257, assigned to [Ru(ptpy)(phem)]2+.

[Ru(mptpy)(phem)](PF6)2 (6): In a double-neck 100 mL round-bottom flask, 10 mL
of ethylene glycol, 55 mg (0.1 mmol) of Ru(mptpy)Cl3, and 54 mg (0.1 mmol) phem
were added. The mixture was heated at reflux under a stream of argon for 24 h, cooled
slowly at ambient temperature, and 10 mL of distilled water were added. To the result-
ing red solution, about 20 mg (0.1 mmol) of KPF6 was added under continuous stirring
and the mixture was kept overnight in the fridge. The dark-red precipitate was collected
through filtration and purified chromatographically as in the case of (1). The resulting
solid was dissolved in saturated aqueous solution of KPF6 where the complex (6) was
precipitated, collected by filtration and dried under vacuum over CaCl2. Yield 70% (89 mg).
C53H47F12N7O5P2Ru (1253): Calc. C, 50.80; H, 3.78; N, 7.83. Found C, 50.68; H, 3.85; N, 7.68.
1H NMR (dmso-d6, 298 K, δ in ppm, 3J in Hz, 400 MHz) [mptpy]: H3′H5′ = 9.47 (s, 2H);
H3H3′′ = 9.11 (d, 2H, 3J = 8.0); H4H4′′ = 8.07 (t, 2H, 3J = 7.8); H5H5′′ = 7.27 (t, 2H, 3J = 7.9);
H6H6′′ = 7.54 (d, 2H, 3J = 5.5); H2′′′H6′′′ = 8.38 (d, 2H, 3J = 7.9); H3′′′H5′′′ = 7.58 (d, 2H,
3J = 7.9); βCH3 = 3.05 (s, 3H). [phem]: H3H3′′ = 9.11 (d, 2H, 3J = 8.0); H4H4′′ = 8.07 (t,
2H, 3J = 8.0); H5H5′′ = 7.27 (d, 2H, 3J = 7.9); H6H6′′ = 7.54 (d, 2H, 3J = 5.5); H3′H5′ = 9.47
(s, 2H); H2′′′H6′′′ = 8.42 (d, 2H, 3J = 8.5); H3′′′H5′′′ = 7.37 (d, 2H, 3J = 8.5); NH = 8.18 (s,
1H); βCH2- = 3.67 (s, 2H); CH3-[acetylamide] = 2.05 (s, 3H); CH3-[ethylester] = 1.26 (t, 6H,
3J = 6.3); CH2-[ethylester] = 4.23 (q, 4H, 3J = 7.2). HR-ESI-MS: m/z = 481.6337, z = 2; calcu-
lated for [C53H47N7O5Ru]2+, m/z = 481.6336, assigned to [Ru(mptpy)(phem)]2+.

[Ru(phem)2](PF6)2 (7): In a double-neck 100 mL round-bottom flask, 15 mL of ethy-
lene glycol, 76 mg (0.1 mmol) of Ru(phem)Cl3, and 54 mg (0.1 mmol) phem were added.
The mixture was heated at reflux under a stream of argon for 24 hours, cooled slowly
at ambient temperature, and 20 mL of distilled water was added. To the resulting red
solution, about 20 mg (0.1 mmol) of KPF6 was added and the mixture was kept overnight
in the fridge. The red precipitate was collected through filtration and purified chromato-
graphically as in the case of complex (1). The resulting solid was dissolved in saturated
aqueous solution of KPF6 where the complex (7) was precipitated, collected by filtration,
and dried under vacuum over CaCl2. Yield 50% (73 mg). C62H60F12N8O10P2Ru (1468.2):
Calc. C, 50.72; H, 4.12; N, 7.63. Found C, 50.41; H, 4.23; N, 7.68. 1H NMR (dmso-d6, 298 K,
δ in ppm, 3J in Hz, 400 MHz). [phem]: H3H3′′ = 9.12 (d, 2H, 3J = 8.0); H4H4′′ = 8.06 (t,
2H, 3J = 8.0); H5H5′′ = 7.27 (t, 2H, 3J = 7.5); H6H6′′ = 7.52 (d, 2H, 3J = 6.0); H3′H5′ = 9.47
(s, 2H); H2′′′H6′′′ = 8.39 (d, 2H, 3J = 8.2); H3′′′H5′′′ = 7.36 (d, 2H, 3J = 8.2); NH = 8.22 (s,
1H); βCH2- = 3.65(s, 2H); CH3-[acetylamide] = 2.04 (s, 3H); CH3[ethylester] = 1.24 (t, 6H,
3J = 6.3); CH2 [ethylester] = 4.23(q, 4H, 3J = 7.2). HR-ESI-MS: m/z = 589.1754, z = 2; calcu-
lated for [C62H60N8O10Ru]2+, m/z = 589.1732, assigned to [Ru(phem)2]2+.

The complexes, [Ru(tpy)(phet)](PF6)2 (8), [Ru(ptpy)(phet)](PF6)2 (9), [Ru(mptpy)(phet)]
(PF6)2 (10) and [Ru(phet)2](PF6)2 (11) were prepared similarly. In a typical experiment,
50 mg of the corresponding parent complex (4)–(7) was transferred in a single-neck 100 mL
round-bottom flask and 10 mL of aqueous 3M HCl was added. The suspension was
heated at reflux for 72 h under N2 and evaporated to dryness under reduced pressure. The
red solid was then dissolved in 50 mL of distillate water and 50 mg of KPF6 was added
under continuous stirring. A dark-red microcrystalline product appeared after cooling the
solution overnight in the fridge, was washed several times with cold H2O, and was dried
under vacuum over CaCl2. The yield ranged from 75 to 85% depending on the complex.

[Ru(tpy)(phet)](PF6)2 (8): Yield 80%. C39H31F12N7O2P2Ru (1020.7): Calc. C, 45.89;
H, 3.06; N, 9.61. Found C, 46.12; H, 3.23; N, 9.52. 1H NMR (dmso-d6, 298 K, δ in ppm,
3J in Hz, 400 MHz). [tpy]: H4′ = 8.53 (t, 1H, 3J = 8.1); H3′H5′ = 8.85 (d, 2H, 3J = 8.1);
H3H3′′ = 9.15 (d, 2H, 3J = 8.2); H4H4′′ = 8.03 (t, 2H, 3J = 8.2); H5H5′′ = 7.27 (t, 2H, 3J = 7.9);
H6H6′′ = 7.52 (d, 2H, 3J = 5.0). [phet]: H3H3′′ = 9.11 (d, 2H, 3J = 7.9); H4H4′′ = 8.05 (t, 2H,
3J = 8.2); H5H5′′ = 7.28 (t, 2H, 3J = 7.9); H6H6′′ = 7.52 (d, 2H, 3J = 5.0); H3′H5′ = 9.49 (s, 2H);
H2′′′H6′′′ = 8.46 (d, 2H, 3J = 8.1); H3′′′H5′′′ = 7.68 (d, 2H, 3J = 8.1); αCH = 3.68 (t, 1H, 3JHαHβ
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= 6.1); βCH2 = 3.32, 3.38 (m, 2H, 3JHαHβ1/HαHβ2 = 6.1/7.3). HR-ESI-MS: m/z = 365.5789,
z = 2; calculated for [C39H31N7O2Ru]2+, m/z = 365.5786, assigned to [Ru(tpy)(phet)]2+.

[Ru(ptpy)(phet)](PF6)2 (9): Yield 75%. C45H35F12N7O2P2Ru (1096.8): Calc. C, 49.28; H,
3.22; N, 8.94. Found C, 49.72; H, 3.39; N, 8.79. 1H NMR (dmso-d6, 298 K, δ in ppm, 3J in Hz,
400 MHz). [ptpy]: H3′H5′ = 9.48 (s, 2H); H3H3′′ = 9.12 (d, 2H, 3J = 8.1); H4H4′′ = 8.08 (t,
2H, 3J = 8.0); H5H5′′ = 7.27 (t, 2H, 3J = 7.6); H6H6′′ = 7.53 (d, 2H, 3J = 5.1); H2′′′H6′′′ = 8.43
(d, 2H, 3J = 8.0); H3′′′H5′′′ = 7.77 (t, 2H, 3J = 8.0); H4′′′ = 7.68 (t, 1H, 3J = 7.6); [phet]:
H3′H5′ = 9.48 (s, 2H); H3H3′′ = 9.12 (d, 2H, 3J = 8.2); H4H4′′ = 8.08 (t, 2H, 3J = 8.2);
H5H5′′ = 7.28 (t, 2H, 3J = 7.9); H6H6′′ = 7.53 (d, 2H, 3J = 5.1); H2′′′H6′′′ = 8.45 (d, 2H,
3J = 8.0); H3′′′H5′′′ = 7.66 (d, 2H, 3J = 8.0); αCH = 3.60 (t, 1H, 3J = 6.0); βCH2 = 3.32, 3.38 (m,
2H, 3JHαHβ1/HαHβ2 = 6.1/7.2). HR-ESI-MS: m/z = 403.5938, z = 2; calculated for
[C45H35N7O2Ru]2+, m/z = 403.5942, assigned to [Ru(ptpy)(phet)]2+.

[Ru(mptpy)(phet)](PF6)2 (10): Yield 80%. C46H37F12N7O2P2Ru (1110.8): Calc. C,
49.74; H, 3.36; N, 8.83. Found C, 50.02; H, 3.44; N, 8.72. 1H NMR (dmso-d6, 298 K,
δ in ppm, 3J in Hz, 400 MHz). [mptpy]: H3′H5′ = 9.48 (s, 2H); H3H3′′ = 9.11(d, 2H,
3J = 8.1); H4H4′′ = 8.06 (t, 2H, 3J = 8.0); H5H5′′ = 7.27 (t, 2H, 3J = 7.6); H6H6′′= 7.56 (d, 2H,
3J = 5.0); H2′′′H6′′′ = 8.38, (d, 2H, 3J = 8.0); H3′′′H5′′′ = 7.58 (d, 2H, 3J = 8.0); phCH3 = 3.05
(s, 3H). [phet]: H3′H5′ = 9.46 (s, 2H); H3H3′′ = 9.11(d, 2H, 3J = 8.0); H4H4′′ = 8.07 (t, 2H,
3J = 8.0); H5H5′′ = 7.28 (t, 2H, 3J = 7.9); H6H6′′ = 7.56(d, 2H, 3J = 5.0); H2′′′H6′′′ = 8.45 (d,
2H, 3J = 8.0); H3′′′H5′′′ = 7.66 (d, 2H, 3J = 8.0); αCH = 3.57 (t, 1H, 3J = 6.0); βCH2 = 3.29,
3.37 (m, 2H, 3JHαHβ1/HαHβ2 = 6.0/7.0). HR-ESI-MS: m/z = 410.6013, z = 2; calculated for
[C46H37N7O2Ru]2+, m/z = 410.6021, assigned to [Ru(mptpy)(phet)]2+.

[Ru(phet)2](PF6)2 (11): Yield 85%. C48H40F12N8O4P2Ru (1183.9): Calc. C, 48.70;
H, 3.41; N, 9.46. Found C, 49.01; H, 3.50; N, 9.42. 1H NMR (dmso-d6, 298 K, δ in ppm,
400 MHz). [phet]: H3′H5′ = 9.47 (s, 4H); H3H3′′ = 9.12 (d, 4H, 3J = 8.2); H4H4′′ = 8.07 (t,
4H, 3J = 7.5); H5H5′′ = 7.28 (t, 4H, 3J = 7.5); H6H6′′ = 7.53 (d, 2H, 3J = 5.6); H2′′′H6′′′ = 8.40
(d, 4H, 3J = 7.8); H3′′′H5′′′ = 7.66 (d, 4H, 3J = 7.8); αCH- = 3.62 (t, 2H, 3J = 5.4); βCH2- = 3.29,
3.38 (m, 4H, 3JHαHβ1/HαHβ2 = 4.2/6.5). ESI-MS: m/z = 447.1119, z = 2; calculated for
[C48H40N8O4Ru]2+, m/z = 447.1103, assigned to [Ru(phet)]2+.

3. Results and Discussion
3.1. Synthesis

The ligand phet was synthesized through the following steps: (i) the selective bromi-
nation of the -CH3 group of mptpy with N-bromosuccinimide (NBS) in CCl4 using benzoyl
peroxide as a radical initiator, (ii) the addition of the diethyl acetamidomalonate anion on
the bromo-derivative and isolation of phem (1) and (iii) the acidic hydrolysis of the amide,
ester, and decarboxylation of (1) forming the hydrochloric salt phet·HCl. Adjusting the pH
between 4.5 and 5, the pure amino acid phet (2) precipitated. The synthetic procedure is
summarized in Scheme 2.

With the aim to isolate the complexes of the general formula [Ru(L1)(phet)](PF6)2
(L1 = tpy, ptpy, mptpy), we initially synthesized the complexes [Ru(L1)(phem)]2+. The reason
is that, in contrast to phem, the ligand phet possesses an active carboxyl and amino group,
which may potentially coordinate with the ruthenium centre. Attempts to synthesize these
complexes through the reaction between the ligand phet and the corresponding complexes
Ru(tpy)Cl3, Ru(mtpy)Cl3, Ru(phem)Cl3 and Ru(phet)Cl3 were made; however, mixtures of
several products were observed. Thus, initially, we prepared the complexes (4)–(7) through
the reaction of phem with their corresponding complexes in ethylene glycol and isolated
them as [PF6]− salts. From boiling ethylene glycol, the Ru(III) was reduced to Ru(II)
while oxidation species such as glyoxal and glycolaldehyde were formed. The isolated
complexes (4)–(7) were subjected to acetic hydrolysis of the amide and diethyl esters, as
well as decarboxylation of the phem Cα, forming the complexes (8)–(11) (Scheme 3).
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3.2. Characterization

The 1H NMR spectrum of phem in dmso-d6 (Figure 1) showed significant differences
from the spectrum of the original compound mptpy. Specifically, a new signal at 8.17 ppm
was assigned to the NH amide proton, while the new signals in the aliphatic part of the
spectrum were assigned to the acetyl group (CH3-acetylamide 2.00 ppm) and the methyl
(1.21 ppm) or ethyl (4.20 ppm) groups of malonate ethyl esters. In addition, a singlet at
3.53 ppm was assigned to the protons of the βCH2. The aromatic protons of the phenyl-
terpyridine moiety of phem shifted marginally in the range of ± 0.05 ppm, compared to
the mptpy. However, the H3′′′H5′′′ shifted downfield by 0.25 ppm, indicating that the
modification in the Cβ affects the neighbouring protons.

Chemistry 2022, 4, FOR PEER REVIEW 6 
 

 

400 MHz). [ptpy]: H3′H5′ = 9.48 (s, 2H); H3H3″ = 9.12 (d, 2H, 3J = 8.1); H4H4″ = 8.08 (t, 2H, 
3J = 8.0); H5H5″ = 7.27 (t, 2H, 3J = 7.6); H6H6″ = 7.53 (d, 2H, 3J = 5.1); H2‴H6‴ = 8.43 (d, 2H, 
3J = 8.0); H3‴H5‴ = 7.77 (t, 2H, 3J = 8.0); H4‴ = 7.68 (t, 1H, 3J = 7.6); [phet]: H3′H5′ = 9.48 (s, 
2H); H3H3″ = 9.12 (d, 2H, 3J = 8.2); H4H4″ = 8.08 (t, 2H, 3J = 8.2); H5H5″ = 7.28 (t, 2H, 3J = 
7.9); H6H6″ = 7.53 (d, 2H, 3J = 5.1); H2‴H6‴ = 8.45 (d, 2H, 3J = 8.0); H3‴H5‴ = 7.66 (d, 2H, 
3J = 8.0); αCH = 3.60 (t, 1H, 3J = 6.0); βCH2 = 3.32, 3.38 (m, 2H, 3JHαHβ1/HαHβ2 = 6.1/7.2). HR-
ESI-MS: m/z = 403.5938, z = 2; calculated for [C45H35N7O2Ru]2+, m/z = 403.5942, assigned to 
[Ru(ptpy)(phet)]2+.  

[Ru(mptpy)(phet)](PF6)2 (10): Yield 80%. C46H37F12N7O2P2Ru (1110.8): Calc. C, 49.74; 
H, 3.36; N, 8.83. Found C, 50.02; H, 3.44; N, 8.72. 1H NMR (dmso-d6, 298 K, δ in ppm, 3J in 
Hz, 400 MHz). [mptpy]: H3′H5′ = 9.48 (s, 2H); H3H3″ = 9.11(d, 2H, 3J = 8.1); H4H4″ = 8.06 
(t, 2H, 3J = 8.0); H5H5″ = 7.27 (t, 2H, 3J = 7.6); H6H6′’= 7.56 (d, 2H, 3J = 5.0); H2‴H6‴ = 8.38, 
(d, 2H, 3J = 8.0); H3‴H5‴ = 7.58 (d, 2H, 3J = 8.0); phCH3 = 3.05 (s, 3H). [phet]: H3′H5′ = 9.46 
(s, 2H); H3H3″ = 9.11(d, 2H, 3J = 8.0); H4H4″ = 8.07 (t, 2H, 3J = 8.0); H5H5″ = 7.28 (t, 2H, 3J = 
7.9); H6H6″ = 7.56(d, 2H, 3J = 5.0); H2‴H6‴ = 8.45 (d, 2H, 3J = 8.0); H3‴H5‴ = 7.66 (d, 2H, 3J 
= 8.0); αCH = 3.57 (t, 1H, 3J = 6.0); βCH2 = 3.29, 3.37 (m, 2H, 3JHαHβ1/HαHβ2 = 6.0/7.0). HR-ESI-
MS: m/z = 410.6013, z = 2; calculated for [C46H37N7O2Ru]2+, m/z = 410.6021, assigned to 
[Ru(mptpy)(phet)]2+. 

[Ru(phet)2](PF6)2 (11): Yield 85%. C48H40F12N8O4P2Ru (1183.9): Calc. C, 48.70; H, 3.41; 
N, 9.46. Found C, 49.01; H, 3.50; N, 9.42. 1H NMR (dmso-d6, 298 K, δ in ppm, 400 MHz). 
[phet]: H3′H5′ = 9.47 (s, 4H); H3H3″ = 9.12 (d, 4H, 3J = 8.2); H4H4″ = 8.07 (t, 4H, 3J = 7.5); 
H5H5″ = 7.28 (t, 4H, 3J = 7.5); H6H6″ = 7.53 (d, 2H, 3J = 5.6); H2‴H6‴ = 8.40 (d, 4H, 3J = 7.8); 
H3‴H5‴ = 7.66 (d, 4H, 3J = 7.8); αCH- = 3.62 (t, 2H, 3J = 5.4); βCH2- = 3.29, 3.38 (m, 4H, 
3JHαHβ1/HαHβ2 = 4.2/6.5). ESI-MS: m/z = 447.1119, z = 2; calculated for [C48H40N8O4Ru]2+, m/z = 
447.1103, assigned to [Ru(phet)]2+.  

3. Results and Discussion 
3.1. Synthesis 

The ligand phet was synthesized through the following steps: (i) the selective bro-
mination of the -CH3 group of mptpy with N-bromosuccinimide (NBS) in CCl4 using ben-
zoyl peroxide as a radical initiator, (ii) the addition of the diethyl acetamidomalonate an-
ion on the bromo-derivative and isolation of phem (1) and (iii) the acidic hydrolysis of the 
amide, ester, and decarboxylation of (1) forming the hydrochloric salt phet·HCl. Adjusting 
the pH between 4.5 and 5, the pure amino acid phet (2) precipitated. The synthetic proce-
dure is summarized in Scheme 2.  

 
Scheme 2. Reactions and conditions of the synthetic procedure of phet.

Chemistry 2022, 4, FOR PEER REVIEW 7 
 

 

Scheme 2. Reactions and conditions of the synthetic procedure of phet. 

With the aim to isolate the complexes of the general formula [Ru(L1)(phet)](PF6)2 (L1 
= tpy, ptpy, mptpy), we initially synthesized the complexes [Ru(L1)(phem)]2+. The reason 
is that, in contrast to phem, the ligand phet possesses an active carboxyl and amino group, 
which may potentially coordinate with the ruthenium centre. Attempts to synthesize 
these complexes through the reaction between the ligand phet and the corresponding 
complexes Ru(tpy)Cl3, Ru(mtpy)Cl3, Ru(phem)Cl3 and Ru(phet)Cl3 were made; however, 
mixtures of several products were observed. Thus, initially, we prepared the complexes 
(4)–(7) through the reaction of phem with their corresponding complexes in ethylene gly-
col and isolated them as [PF6]− salts. From boiling ethylene glycol, the Ru(III) was reduced 
to Ru(II) while oxidation species such as glyoxal and glycolaldehyde were formed. The 
isolated complexes (4)–(7) were subjected to acetic hydrolysis of the amide and diethyl 
esters, as well as decarboxylation of the phem Cα, forming the complexes (8)–(11) (Scheme 
3)  

L = tpy, ptpy, 
mptpy

MeOH, 12h phem, KPF6

ethylene glycol, 
reflux, Ar, 12h

RuCl3. 3H2O + 3L RuLCl3 [RuL(phem)](PF6)2 (4)-(6)

3M HCl, 72h, 
reflux, N2

[RuL(phet)](PF6)2 (8)-(10)Ru(phem)Cl3 (3)

phem
MeOH, 4h

phem, KPF6

ethylene glycol, 
reflux, Ar, 12h

(7)

3M HCl, 
72h, 

reflux, N2

(11)

 
Scheme 3. The formation of the ruthenium complexes (3)–(11). 

3.2. Characterization 
The 1H NMR spectrum of phem in dmso-d6 (Figure 1) showed significant differences 

from the spectrum of the original compound mptpy. Specifically, a new signal at 8.17 ppm 
was assigned to the NH amide proton, while the new signals in the aliphatic part of the 
spectrum were assigned to the acetyl group (CH3-acetylamide 2.00 ppm) and the methyl 
(1.21 ppm) or ethyl (4.20 ppm) groups of malonate ethyl esters. In addition, a singlet at 
3.53 ppm was assigned to the protons of the βCH2. The aromatic protons of the phenyl-
terpyridine moiety of phem shifted marginally in the range of ± 0.05 ppm, compared to 
the mptpy. However, the H3‴H5‴ shifted downfield by 0.25 ppm, indicating that the 
modification in the Cβ affects the neighbouring protons.  

 

Scheme 3. The formation of the ruthenium complexes (3)–(11).

After the hydrolysis and decarboxylation of phem, the unnatural amino acid phet
was formed. The proton signals of the acetamide NH and -CH3, as well as the signals of
the malonate ethyl esters, were absent, indicating that the hydrolysis of these groups was
achieved. In addition, a signal at 4.61 ppm was assigned to αCH, while the signals at 2.94
and 2.96 were assigned to the non-equivalent protons βCHA and βCHB. Additionally,
the neighboring phenyl group protons H3′′′H5′′′ shifted further downfield from phem by
0.29 ppm. Phet is very soluble in DCl (0.01 M) which is an appropriate solvent for further
NMR studies. At this pH, phet is protonated in the pyridine rings of tpy and the amino
group of αC. In the aliphatic part of the spectrum, only two signals appeared assignable to
αCH (4.32) and βCHA and HB (3.25 and 3.29 ppm). Once again, the two protons of βC, HA
and HB are chemically non-equivalent and coupled further with the HX of αC, forming an
ABX spin-splitting pattern (Figure 2a).
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Figure 2. (a) The 1H NMR spectrum (DCl 0.01 M, 298 K, δ ppm) of phet with structure numbering
and proton assignments. Inset, expansion of the aliphatic part of the spectrum showing the ABX
proton spin system between αC and βC. (b) The HRESIMS of phem.

Complex (3) is insoluble in most of the common organic solvents. In order to form
the homoleptic complex [Ru(phem)2]2+, it was used without further characterization. In
the aromatic part of the 1H NMR spectrum of (4), the signals of the ending pyridine rings
of tpy and phem overlapped, apart from those of terpyridines H6H6′′ and phemH6H6′′

which, in the cases of (4) (7.52, 7.43 ppm) and (8) (7.68, 7.52 ppm), appeared separately
(Figure S1). These signals shifted upfield by 1.22 and 1.34 ppm, respectively, despite being
expected to shift downfield, due to the coordination of the neighboring nitrogen atoms
to the ruthenium center. This effect was observed for all the complexes (4)–(11) and was
attributed to the perpendicular orientation of H6H6′′ towards the metal t2g electron density
and the π electron cloud of the other terpyridine ligands (phem or tpy) [43,44]. On the
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other hand, the signals of the middle pyridine protons, H3′H5′ and phem H3′H5′or phet
H3′H5′, shifted significantly downfield, as expected (e.g., for (4) tpy H3′H5′ = 0.39 and
phem H3′H5′ = 0.74 ppm).

In the aliphatic part of the 1H NMR spectra of (8)–(11) (Figures S5–S11) only the
proton signals of αCH and βCH2 appeared, as well as the methyl group in the case of
(10). Compared to the free phet in dmso-d6, the signals of βCH shifted slightly downfield
probably indicating a conformational change in the Cβ-Ca bonds, due to the coordination
of the terpyridine moiety of phet to the ruthenium center. However, the αCH shifted
downfield by 0.13–0.24 ppm depending on the nature of the coordinated terpyridine.

3.3. Photophysical Studies

The absorption spectra of the complexes (4)–(7) and (8)–(11) are presented in Figure 3,
while their photophysical data are summarized in Table 1. In general, the spectra of (4)–(7)
and (8)–(11) are similar to each other, displaying a typical spectrum of Ru(II)-bis-terpyridine
complex [45]. In the UV spectrum of (1), two absorption bands were observed at 251 and
277 nm, assigned to π→ π* intra-ligand transitions as expected [33,46]. Similarly, in the
spectrum of (2), the initial bands were slightly shifted due to the hydrolysis of the malonate
ester and the decarboxylation of Cα. In the cases of (4)–(7) and (8)–(11), these bands shifted
at lower energy, ranging from 286 to 289 nm and from 305 to 313 nm, respectively, depend-
ing on the nature of the additionally coordinated terpyridine. Additionally, hyperchromic
or hypochromic effects were observed, due to the different contribution of each ligand to
the π→ π* transition.
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Table 1. Photophysical data for (1), (2) and (4)–(11) in solid state and in acetonitrile solution.

Absorption [298 K] Excitation 298 K Emission 298 K

λmax [nm], (ε × 103 M−1cm−1)
Solid

λexc [nm]
Solution
λexc [nm]

Solid
λem [nm] Q (%) Solution

λem [nm] Q (%)

(1) 251 (23.5), 277 (28.0), 306 sh - - - - - -
(4) 286 (33.7), 308 (46.5), 487 (15.5) - - - - - -
(5) 284 (56.8), 310 (54.0), 489 (19.7) - - - - - -
(6) 286 (50.8), 311 (51.6), 489 (19.8) - - - - - -
(7) 286 (51.2), 309 (53.2), 493 (20.5) - - - - - -
(2) 252 (19.6), 281 (23.0), 311 sh 350 280 404, 505 0.75 355 0.97
(8) 286 (30.0), 311 (39.3), 488 (15.1) 466 488 502, 521, 575 1.20 637 0.95
(9) 287 (28.4), 313 (36.3), 490 (15.1) 466 488 503, 520, 575 0.22 646 0.11

(10) 289 (33.9), 310 (36.0), 489 (14.2) 470 494 501, 521, 574 0.87 648 0.76
(11) 288 (21.6), 305 (20.2), 491 (9.2) 470 493 500, 522, 575 3.32 645 1.81
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The absorption bands which were observed between 488 and 491 nm were assigned
to metal-to-ligand-charge-transfer (MLCT) with molar coefficients (ε) varying from 9.2
to 14.2 × 103 M−1cm−1. In general, our results are consistent with the previous report of
Maestri et al. that the substitution in the 4′ position of the terpyridine with electron donating
or accepting groups significantly affects the maxima of their MLCT band [47]. Comparing
the MLCT λmax of the homoleptic (7) and (11) with that of the similar [Ru(tpy)2](PF6)2 and
Ru(ptpy)2](PF6)2 in acetonitrile, a gradient red shift of the MLCT maxima was observed.
The low energy shift can be corelated to the electron donation of the tpy 4′-substituents fol-
lowing the order: [Ru(tpy)2](PF6)2, 474 nm < [Ru(ptpy)2](PF6)2, 488 nm < [Ru(phet)2](PF6)2,
491 nm < [Ru(phem)2](PF6)2, 493 nm.

The emission and excitation data of the synthesized complexes and the free ligands in
degassed acetonitrile solution and in solid state are presented in Table 1. By exciting the
ligands (1) and (2) in the solid state, with λexc 311 and 350 nm, respectively, a weak green
emission at 550 nm with low photoluminescent quantum yield was observed only for (2),
while (1) was practically non-emitting.

Upon the excitation of complexes (4)–(7), both in acetonitrile solution and in the
solid state, practically no emission was observed. On the other hand, the complexes
(8)–(11) in acetonitrile emitted similarly at about 637–648 nm with low quantum yields
which were calculated at about 1 to 2% (Figure 4). This is expected for Ru(II) complexes
with 4′-substituted terpyridines [46]. Similar results have been reported previously by
Zhang et al. [48] where Ru(II) complexes with 4,4′ substituted 2,2′-bipyridine were applied
as sensitive luminescence probes for detection of cysteine (Cys) and homocysteine (Hcy).
The reaction of the non-luminescent probe with Cys and Hcy was accompanied by a notable
luminescence increase. In the solid state, the complexes had similar spectra, producing
a green emission with low quantum yields in the range of 0.1 to 3% depending on the
nature of the coordinated ligands. Complex (11) was the most emissive (Q~3.3%) while (9)
marginally emitted. All spectra showed a vibronic structure with vibronic spacing about
1750 and 800 cm−1 due to the high energy vibrations of the ligands. In general, emission
was derived from the triplet excited states, mixed with 3MLCT and 3IL [49,50].
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4. Conclusions

The synthesis of the novel UAA 3-(4-([2,2′:6′,2′′-terpyridine]-4′-yl)phenyl)-2-
aminopropanoic acid (phet) through the modification of 4′-(p-tolyl)-2,2′:6′,2′′-terpyridine
was achieved. Mononuclear heteroleptic ruthenium complexes of the general formulae
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[Ru(L1)(L2)](PF6)2, as well as the homoleptic [Ru(phem)2](PF6)2 and [Ru(phet)2](PF6)2,
were synthesized and characterized. These complexes can be potentially used as a building
block in the formation of polynuclear ruthenium complexes linked through amide bonds
of the phet amino and carboxyl group. The photophysical properties of the synthesized
complexes show that the complexes (8)–(11) emit moderately, while the homoleptic (11)
is the most emissive in the solid state and acetonitrile solution, with a photoluminescent
quantum yield of 2–3%.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/chemistry5010012/s1, Figure S1: 1H NMR spectrum of
(4) with proton assignments in dmso-d6 at 298 K. Figure S2: 1H NMR spectrum of (5) with proton
assignments in dmso-d6 at 298 K. Figure S3: 1H NMR spectrum of (6) with proton assignments in
dmso-d6 at 298 K. FIGURE S4: 1H NMR spectrum of (7) with proton assignments in dmso-d6 at
298 K. Figure S5: 1H NMR spectrum of (8) with proton assignments in dmso-d6 at 298 K. Figure S6:
1H NMR spectrum of (9) with proton assignments in dmso-d6 at 298 K. Figure S7: 1H NMR spectrum
of (10) with proton assignments in dmso-d6 at 298 K. FIGURE S8: 1H NMR spectrum of (11) with
proton assignments in dmso-d6 at 298 K. Figure S9: High-resolution ESI MS spectrum of (4). Figure
S10: High-resolution ESI MS spectrum of (5). Inset, the calculated and the experimental (A) and the
calculated (B) isotopic patterns of the cation. Figure S11: High-resolution ESI MS spectrum of (6).
Figure S12: High-resolution ESI MS spectrum of (7). Inset, the calculated and the experimental (A)
and the calculated (B) isotopic patterns of the cation. Figure S13: High-resolution ESI MS spectrum of
(8). Inset, the calculated and the experimental (A) and the calculated (B) isotopic patterns of the cation.
Figure S14: High-resolution ESI MS spectrum of (9). Inset, the calculated and the experimental (A)
and the calculated (B) isotopic patterns of the cation. Figure S15: High-resolution ESI MS spectrum of
(10). Figure S16: High-resolution ESI MS spectrum of (11). Figure S17. Normalized UV spectra of (1)
and (2) in acetonitrile.
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